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THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

BOUNDING GLOBAL MINIMA WITH
INTERVAL ARITHMETIC

by

Louis J. Mancini
Garth P. McCormick

1. Introduction

Many problems in all branches of engineering, business and economics
can be mathematically formulated as a nonlinear programming problem (NLP).
A NLP is an optimization problem in which some objective is minimized (or
maximized) subject to certain constraints which describe the system being
modeled. The objective may be to minimize costs, as the example in this
section shows, or to maximize some performance level. The adjective
"nonlinear" refers to the fact that the objective and constraint functions
may be nonlinear in contrast to the functions used in linear programming.
In this respect, linear programming can be viewed as a special case of non-
linear programming; although the solution procedures used in each are

considerably different.

If no constraints are present, then the NLP is termed '"unconstrained";

and can be symbolically written as

min f(x)
. (1)
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where f , the objective function, is a scalar function of n variables
(i.e., the vector x ) . For example, consider the design of the hypo-

thetical chemical plant shown in Figure 1. The design variables are

X, = reactor temperature

1
X, = reactor pressure

Xq = weight fraction of a catalyst used

x, = weight fraction of the product
leaving the reactor.

The product X, is an explicit function of the temperature Xy given as
x, = 0.1 xg.ZS . Summing the component costs in Table 1 and substituting
for X, yields the cost, or objective, function
1.1 0.6 ~1 -1 0.25 0.2
f(x) = 0.0318 X1 X, + 11430 X, X4 + 228 X, + 1.5 X, = 25 X - 495 X .
Table 1

COMPONENT COSTS FOR CHEMICAL PLANT

Ltod Cost

($/100 1b. material
processed)

1. Reactor 0.0318 xi'l xg'6

2. Separator 11430 xEl xgl

3. Catalyst 228 Xy

4. Compressor 1.5 x,

5. Recycle compressor 250 (1 - xa)

6. Byproduct sales -3123.2 x2'8
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NLPs are usually solved with an algorithm which starts with a given
point (i.e., the best guess) and performs some iterative procedure until
the solution, or an approximate solution, is found. A difficult problem
in any such algorithm is termination, that is, when should the iterative
procedure be stopped? Computer programs which implement algorithms must
contain some ''convergence criterion" which is testable and which if satis-
fied causes termination of the algorithm. When this happens the algorithm

is said to have "converged."

One class of convergence criteria are those which use the iterates

k+1
xo,...,xk,x ... to determine whether or not convergence has been

achieved. The user is required to supply a value € (presumed small)
before the algorithm is initiated. The algorithm is terminated when

ka+1 5 xkl o

or

l£x* ) -£x") | €

|A

depending upon the criterion selected. The obvious flaw in the use of

these criteria is that closeness between the successive iterates does not
imply the iterate is close to x* , the solution to (1). The main advantage
of these criteria is that they prevent bad algorithms (ones which fail to
change the iterates very much each iteration or fail to decrease the objective

function significantly each time) from using a lot of computer time.

From the user's point of view, it is desired to terminate only
when the iterate or its function value is acceptably close to x* (or f(x*))
That is, from considerations of the physical meaning of the problem it is
reasonable to ask the user to supply a value € and for the algorithm to
terminate when either

|2 - x| <€
£ -£%) | < € .
S

T T )
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In some rare cases the value f(x*) 1is known even though x* is
not. Thus the fourth criterion would be implementable in this circumstance.
In general though, this is not the case and these natural convergence cri-
teria cannot be used. It is a major contribution of this paper that using
the theoretical material developed in [7] with the tools of interval arith-
metic [5], that these criteria can be implemented for unconstrained NLPs.
Before showing this it is instructive to consider another convergence cri-
terion which has been suggested in an attempt to bypass the lack of know-

ledge of x* .

A necessary condition for a vector x* to be the optimal solution

to an unconstrained NLP is that

£'(x%) = Q 2
where f' is the gradient vector and Q is the zero vector. Suppose we
are solving (1) with some iterative procedure and the algorithm has gen-
erated a vector xk . Based on (2), we could terminate if the norm of the
gradient vector is near zero, that is, if If'(xk)| <€ . In terms of
Tk, x5 = (698.33, 35.738,

1.1929) and €= 0.05. Then |f'(x)| = 3.25 and we would not terminate.

However, now suppose we measure costs in dollars/lb rather than dollars/100 1b

the chemical plant example suppose xk = (x

(see Table 1), and thus define c(x) = f£(x)/100 as the new cost function.

Then for the same vector x© , |c'(xk)| = If'(xk)|/100 = 0.0325 , and we
would terminate. Thus this criterion fails since the norm of the gradient

vector is dependent upon the scaling of the problem.

There are two further objections to the use of this last convergence
criterion. Whereas the user may have a good reason to accept a point which
is within € in norm from the solution vector or whose objective function
is within € of the optimal objective function value, there is usually no
physical interpretation of a point whose gradient norm is less than € .
Second, as a practical matter no one ever tries this convergence criterion
more than once. Except for simple problems, because of numerical considera-

tions, there seems to be a value above zero below which it is impossible to
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reduce the gradient norm even with the most powerful minimization techniques.

The computer just keeps running and running.

This paper presents a solution to the termination problem for
unconstrained NLPs. In [7] the authors have shown that, under certain
conditions, an analytic expression exists for the difference f(x) - f(x%*) ;
where x* 1is the global solution over some compact region. This difference
represents how far, in terms of the objective function, the vector x is
from the optimal vector x* . However, the necessary conditions and the
analytic expression for the difference usually cannot be computed exactly.

It will be shown how interval analysis can be used, under certain conditionms,
to compute an interval bound on the difference f(x) - f(x*) . In the pro-
cess an interval bound on the solution vector x* 1is also generated. These

bounds can be used as termination criteria.

2. Interval Analysis

Interval arithmetic [8] generalizes ordinary arithmetic to closed
intervals of the real line. Give two intervals u = [a,b] and w = [c,d] ,

interval arithmetic is defined by

u+w: [a+c, b+d]
u-ws:z[a-d,b-c]
u-°ws [min(ac, ad, bc, bd),
max(ac, ad, bc, bd)]
u/w = [a, b] - [1/d, 1/c]

where u/w is defined only if O ¢ [c,d] . The degenerate interval,
[u,u] , is not distinguished from the ordinary number u . On the computer,

rounded interval arithmetic [6,15] is used in place of the exact version

above to bound round off error. Rounded intervals might be slightly larger,

but they are guaranteed to contain the exact result.

Interval matrices are rectangular arrays with intervals as components.

A square interval matrix A is nonsingular if and only if all ordinary

matrices AecA are nonsingular, that is,

R, _— o 5 R . S ———
'\K\ " “‘ o Daes i
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0 ¢ {det A|AeA} .

Usually it is not possible to compute the right-hand side of the above

exactly, however, an interval determinant, det K, satisfying

{det A|AeA} C det A (3)

can be computed. If A is nonsingular, then an interval inverse, (K)—l,

satisfies

(a7t aek) ¢ @7!

Consider the interval linear system

Ay=>b (4)
where A is nonsingular. The theoretical solution set, @ , is

Q= {y|Ay = b, AeA, beb}

and an interval solution y must satisfy b C Ay ; and hence contains

.

The ; with smallest width [8, p. 7] is desired to minimize the difference
between K';' and b . Hansen [3,4], Hansen and Smith [5,6], and Oettli [10]
have developed methods for solving (4).

If f:R™R is continuous, then an interval extension of f , on an

interval vector x C Rn , 18 an interval-valued function f which satisfies

f(x) = f(x) for all XEX
et by et 1 (5)
f(u) € f(w) for all uCwCx .

Interval extensions, like interval determinants and interval inverses, are
not unique; and
{£(u) |ueu) € E(u) (6)

for all uCx . The "best" interval extension, or united extension (8, p. 18],
is that function f in which equality holds in (6). Finding good computable
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interval extensions, limiting the difference between the left- and right-

hand sides of (6), is one of the key problems in interval analysis.

Suppose h:Rn->Rn is continuously differentiable, and let x* denote

a zero of h . Assume continuous [8, p. 18] interval extensions, Eij 5 OF

the partial derivatives

ahi
' B —— 1 =
hij(x) e (67 [EERE 1% s nman

3

L SURTOR——

are available on x . For ;,;_C_:_; define

h' e = h' o o 5 & i =
hij(u,w) hij(ul""’uj—l’wj""’wn) LeBs e | GRS (7)
and let h'(u,w) be the interval matrix with components Hij(ﬁ;;b e
h'(x,x) is nonsingular in the interval sense, then EW(E,;) is non-
i # singular for all :,;<;_; ; and an interval Newton operator, ﬁl , can be
‘ defined as
i il(w,;) =w-nh' (w,_v;)_l * h(w) for all wewCx . (8)

Nickel has proven that the above interval Newton operator has some interesting

properties.

Theorem 1 [9]: Suppose h'(x,x) is nonsingular. Then

(a) Any zero x* of h in x is unique.

(b) If x* ¢ x , then x* ¢ ﬁi(x,;) for all x € x .

(¢) If xN ﬁl(x,;) =P for any x € x , then x* ¢ x .

(d) 1If ﬁl(x,;) C x for any X € x , then x* ¢ il(x,;)
If the hypotheses in Part (d) hold, then the existence of a zero x* of h

in x has been verified, x* is contained in the interval ﬁi(x.;) , and

x* 1is the unique zero of h in x .
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3. Bounding Global Minima

The authors have shown [7] that, under certain conditions, an

analytic expression exists for the difference f(x) - f(x*) ; where

f:Rn+R and x* minimizes f over a convex compact set, S , in Rn .
However, the necessary conditions and the expression for the difference
usually cannot be computed exactly. This section presents a computational
procedure, based on interval analysis, which can produce an interval bound
on the difference f(x) - f(x*) . In the process an interval bound on

x* is also generated.

Assume f 1is twice continuously differentiable on S , and that
the Hessian matrix, f''(x) , is positive definite on S . Define the
gradient set

U= {u|u = £f'(x) for some x e S} .

It follows from the inverse function theorem and the convexity of S that
there exists a unique differentiable function g defined on U such that
glf'(x)] = x for all x e S .

Theorem 2 [7]: Let SI denote the interior of S , and assume f is

twice continuously differentiable on an open set containing S . Suppose

xo € S and

(i) f£''(x) 1is positive definite on S ,

(ii) the set N(xo) defined as
N(xo) = {xo - (fé f"[xo + (x - xo)s]ds)-1 . f'(xo)lx e S}
is contained in S , that is, N(xo)GE 8

Then there exists a x* ¢ N(xo) such that

£'(x*) = @ , f(x*) = inf £(x) ,
XeS

and x* 1is the unique stationary point of f in S . Furthermore, if
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(1idi) xo € SI . O

(v N0 ¢ st ;

| . «

then tf'(xo) e U for all t ¢ [0,1] , and

1

: e el DN de - D . )

£(x) - £t = ' xDHT .

At first glance the above theorem seems to be of only theoretical interest.

Hypotheses (i), (ii) and the expression (9) for the difference £(x0) - f(x*)

usually cannot be computed exactly. However, it will be shown that interval

analysis can be used to calculate an interval version of Theorem 2.

Suppose the convex compact set S is some interval x in R" -

and assume continuous interval extensions, ?;3 , of the second partial

derivatives of f are available on x . Let ‘?"(;};) be the interval

Hessian matrix with components ?1'(;;;) given by (7). If an interval

J

.

determinant (3) is computed, and

0 £ det £''(x,x) , (10)

then f''(x) 1is nonsingular for all x € X . Furthermore, since the

eigenvalues of a matrix are continuous functions of the matrix components
[11]); if £''(x) is positive definite for any x € x and (10) holds,
then f''(x) 1is positive definite on X , and hypothesis (i) of Theorem 2
is satisfied.

An interval Newton operator can be used to verify hypothesis (ii).
The definition of an interval extension (5) implies that

fé f"(xo + (x - xo)s]ds e £''(x,x)

for all xo , X in X . If (10) holds, then f''(x,x) is invertible;
and the definition of an interval inverse implies that

- 10 -

f
A
y
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1

Sy £ 1 + xDslde) e TR (11)
for all xo 3 x-in X . An interval Newton operator, ﬁz , which uses the
symmetric f''(x,x) can be defined as

N0 =L - @o Tt erad) . (12)
Therefore, if xo,c x and
- 0 — -
N, (x7,x) C x (13)

then (11) and (12) imply that
N e R, e X,
and hypothesis (ii) is satisfied.
If (10) and (13) hold, then from Theorem 2, there exists a stationary

point x* of f 1in ﬁz(xo,;) , and x* is the unique such point in % .

Furthermore, if f£''(x) is positive definite for some x € x , then x¥*

0 and/or

minimizes f over x . Assume now that either the point x
the interval ié(xo,;) lie in the interior of x . Then from Theorem 2,

tf'(xo)eU for all te[0,1] , where U = {u|u = £'(x) for some x € x ).
Therefore, the definitions of an interval extension and interval inverse

imply that
£ ' (gl xD)] € T (%)
and
[Leerrateer O lae e 3T GO

Using the above with (9) yields an interval bound on the difference in

function values

) - £(x%) ¢ 3 '@ . TEDT Y . (14)

- 1] &
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The previous discussion has proven the following interval version

of Theorem 2.

Corollary: Let X be some interval in R" , let xI denote the
interior of x , and assume continuous interval extensions.'fij , of the
second partial derivatives of f are available on X . Suppose xo € x

and

(') O ¢ det £''(x,x) and f£''(x) is positive

definite for some x € x 3

(i1') the interval Newton operator (12) is contained
in x , that is, ﬁz(xo,;) < »

Then there exists a x* ¢ ﬁé(xo,;) such that

f'(x*) = 2 ” f(x*) = inf f(x) ,
XEX

and x* 1is the unique stationary point of f in x . Furthermore, if

(1ii') x0 € ;I , Or

(iv') ﬁz(xo,§)§ xr ; then

f(x°) - f(x*) € 1/2 ')t . ?"(I,;E)'l- £'¢(xY) .

The right-hand side of the above is an interval bound on the difference

*
f(xo) - f(x ) , and the interval Newton operator (12) is an interval bound

on x¥* .

Note that the first part of the corollary pertaining to the existence
and uniqueness of x* is similar to Parts (a) and (d) of Theorem 1 by
Nickel (let h(x) = £f'(x) in Theorem 1). Actually, Part (d) of Theorem 1
is stronger since it uses a tighter interval Newton operator. This follows
from the definition of an interval extension since (5) and (7) imply that

(AT W R )

s 12w
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for all xo € ;', and since interval arithmetic is inclusion monotonic
(8, p. 10]

N 600 cN,6o0
where
ii(xo,;) = xo - ?1'(x0,;)-1 . f'(xo) "

Therefore, the interval Newton operator ﬁi(xo.;) , which uses the non-
symmetric ?"(xo,;) , might be contained in x in cases where ﬁz(xo,;)
defined by (12) is not.

Consider the computations involved in implementing the corollary.
Given x in R" . xo € x , and continuous interval extensions,'?is .

on x ; the symmetric f'"(x,x) is formed, and det T''(x,x) is calculated.
An interval determinant, det A , can be calculated by diagonalizing .
using partial pivoting in interval arithmetic, to obtain an upper triangular

A 3 then
u
—— - n —
det A = 1:1 (Au)11 v (15)

It is easy to show that the above satisfies (3). If (10) holds, then

f''(x) 1is nonsingular on x , and the interval Newton operator ﬁé(xo,;)
given by (12) is well defined. Now ﬁz(xo,;) can be calculated by first
solving the interval linear system

FED oy = £

for an interval solution ; , and augmenting xo to obtain
0,600 =x"+7 . (16)
The procedure used here to solve for y is Hansen and Smith's Method 4 [5].

In [4] Hansen presents a refinement procedure which may improve a given

interval solution.

- 13-
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If (13) holds, then ﬁé(xo,;) contains a stationary point x* of f ,

and x* 1is the unique such point in - Furthermore, if f''(x) is posi-
tive definite for any x € X , then f''(x) is positive definite on x ;
and x* minimizes f over x . The interval bound (14) on the difference

f(xo) - f(x*) holds if xo € ;I and/or ﬁ2(xo,;) = X!

, and is easily
obtained from the calculation of iz(xo,;) . This follows since (12), (14),
and (16) imply that

x0 - iz(xo,i) ~fEO e --3
and therefore

f(xo) - f(x*) ¢ - % f'(xo)T -y .

It cannot be overemphasized how much the usefulness of the above
results depends on the availability of good interval extensions and good
numerical methods for calculating an interval determinant and solving an

interval linear system.

4. Unconstrained Signomial Programs

Many optimization problems, especially in engineering design [13],
can be formulated as an unconstrained nonlinear program where the objective
function f , a signomial [12], can be written as

m n agy
f(x) = ¢ c, Xy . (18)
t=1 i=1

Here x 1s a positive vector in R" , and the coefficients c, and

exponents a are arbitrary real numbers. If all the coefficients e

ti
are positive, then f 1is a posynomial [2]; and has a unique stationary point
which is the global minimizer. Defining the exponent vectors

a = (.tl"'°’atn) and substituting 2z = log x , f can be rewritten as

m
f(z) = st(z)
t=1




-
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where the single-term functions, st , are defined as

st(z) =c exp(az o ) t=1,...,m .

t
For an interval [u,w], define exp([u,w]) = [exp(u),exp(w)] ; and

for positive [u,w], define log([u,w]) = [log(u),log(w)] .

Given a positive vector X , the corollary requires an interval

extension of the Hessian
m

£'(2) = L s.(2) a - a
t=1 t t
on z = log X . Since each s_ is monotonic, an interval extension

t
;g(;) , 1s easily obtained by computing s, in interval arithmetic. Then

the definition of an interval extension, the inclusion monotonicity of
interval arithmetic, and Theorems 4.1 and 4.2 by Moore [8, p. 19] imply
that

- — - m -—— . T
f''(z,z2) = £ s (z)a_ *a (19)
t t L
t=1
is a continuous interval extension of f''(z) evaluated on Zz . The above

procedure is computationally attractive, however, different methods exist

which might yield sharper results.

As an example consider the minimum-cost design of the hypothetical
chemical plant introduced in Section 1. The procedure will be illustrated

on two intervals z = log x containing the (approximate) stationary point

694.9 6.5437
z* = log x* = log {35.56] = {3.5712 (20)
1.187 0.17143

obtained using Dembo's algorithm [1] for signomial programs. This will permit
a comparison between the interval bounds on the difference £(z0) - £(z2%)
with the actual values. Note that since f''(z*) 1is positive definite,
if £''(z,z) 1s nonsingular in the interval sense, then f''(z) is positive

definite on z .
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Table 2 presents results where the interval on the original design
variables x equals a + 2.5 percent symmetric deviation around x* given
in (20) , that is,

[677.48, 712.24)

X = x* + 0.025 x* = [ {34.671, 36.450]
[1.1573, 1.2167)

Substituting z = log x and computing the interval Hessian (19) yields

e (338.20, 376.31] [229.05, 249.39] 0
£''(z,z) = |[229.05, 249.39] ([434.68, 475.56] [257.74, 284.86]
0 [257.74, 284.86] [521.61, 562.26]

Calculating the interval determinant defined by (15) yields
det T''(z,2) = [1.6802(107), 4.6121(10))] .

Therefore, f''(z) 1is positive definite on z , and the interval Newton

operator
iz(zo,i) s i TGN - 'Y (21)

is well defined. As discussed in the previOus section, ﬁ2(zo’;) is
calculated by solving the interval linear system

@D - y=- ') “(22)

res 0 =, 0= 0, -
for an interval solution y and augmenting z to obtain Nz(z Z) =3 ¥y ,

The results for three different pcints z0 = log x0 (where x0 = x* + 0.005 x* ,
x* + 0.01 x* , x* + 0.02 x*) are given in Table 2, and in each case

Ez(zo,;)C_Z; . Therefore, in each case the existence of a stationary point
z* in ié(za,;) has been verified, z* is the unique stationary point in

z and z* minimizes f over z . Furthermore, since in each case z0

lies in the interior of z , the interval bound

f(zo) - f(2%) c - %-f'(zo)T .y (23)

holds; and since 2z* 1is known in this example, the bound can be compared

with the actual value. Note that as the distance between 20 and z*

- 1§ =




T-345

[€T96T" ‘TT19%T"] [1s641° “6109T1°] 170} 4k 5 B
G819%" [e166L° [0966°€ “6S%S €] [8285°€ ‘9%6¢°¢] TL2°9¢€| =
R ATAYAS! [c895°9 “€815°9] [€€ss°9 “81z76°9] 9.°80L
¥XZ0° + X °€
[€T96T" ‘TT9%1°] [896/T1° “0€991°] 686T°1
609TT" [€o00Z* [0965°€ “6S%S €] [89L5°€ ‘9296°€] 916°S€E| =
‘961850°] [6895°9 ‘€815°9] [68%5°9 “09€5°9] 18°T0L
¥XT0" + ¥X °Z
LET96T" ‘TT9%T°] [ZLeLT” “S069T°] 6Z6T°T
8€1620° [£9%6%0° [096S € “6S%S°€] [6€L5°€ “899¢°¢€] 8eL GE | =
‘SHEYT 0] [S895°9 “€8T15°9] [¥9%S°9 ‘00%S°9] £€°869
¥XG00° + ¥X °T
Whhs -ty e (1z) *ba =
20Ua1933Fd punog x 80T = 2 ao3exadg unmo
Ien3oy TeAaia3ug ey o uoO3IMaN TeAlIa3jUT d

¥XGT0" + ¥X = X

SATAVIYVA NIIS3AA TVNIDINO NO TVANIAINI

¢ °1qeL

17 =

+ e




T-345

becomes larger, the interval solution ; to (22) becomes wider; and hence

the interval Newton operator and the interval bound become wider.

Table 3 presents results with the same points x0 and where the

interval x equals a + 5 percent deviation around x* , that is,

£ [660.11, 729.61]
x = x* + 0.05 x* = [ [33.782, 37.338]
[1.1276, 1.2464]

Substituting z = log x and computing (19) yields

Jade et [319.64, 395.86] [219.15, 259.81] 0
£''(z,2) = [219.15, 259.81] [415.82, 497.78] [245.61, 300.06] .
0 [245.61, 300.06] [502.72, 584.23]

Again, f''(z) 1is positive definite on z since (15) yields

det £''(z,2) = [0.41092(10'), 6.3177(107)] .

However, the requirement: -N-z(zo,;) c z only holds in the first case where

z0 = log (x* + 0.005 x*) . In cases 2 and 3, the combination of the width

of z and the distance between z0 and z* cause the method to faiil.

All basic interval arithmetic operations were performed using Zoltan's
single-precision rounded interval arithmetic package [15]. Other numerical
procedures yielding tighter interval extensions, or better methods for

solving an interval linear system should produce even better results.
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